
Consumer Grade Router 
Testing

SWE 4040
Project Team: Alex Ross, Will deGrasse, Jeff Wo

Acting Customer: Gary Masson



Roles

Developers

Alex Ross: Project Manager, Python Developer

Jeff Wo: Database Manager

Will de Grasse: Server Manager

Gary Masson: Acting Customer



Purpose

 Original idea Summer 2014

 Developed to offer convenient means of generating traffic load

 Easy platform to share results

 Testing standards and updates

 Low impact, low cost

 BSD Licensing



Goals

 Generates HSI payloads to simulate protocols using iperf and netcat

 Peer to peer, torrents, TCP, UDP

 Runs on a single desktop for WAN traffic

 Desirable for recreating real life uses

 Destructive stress testing capabilities 

 Logs and stores all data for analysis 

 Data easily accessible on local network



Costs

 Using existing obsolete equipment running *buntu the cost is free

 A dedicated router with internet connection

 Existing server already in place

 Otherwise free



General Overview

 Server acting as an iperf
server

 Clients join iperf server 

 Netem implemented to make 
traffic more realistic 

 Port forwarding is required for 
this to function

 DMZ is required if multiple 
users are stressing the server

 Data is sent to server where it 
is logged and stored 



The Frontend 





Importance of Testing

 Eliminates potential loss of profits

 Stability and efficiency

 Existing platforms to test new errors



Database Management
Jeff Wo



Database Management

 Used to store all test records

 Inputs and fetches data automatically

 Monitor server status and track usage

 Indexed and searchable



Database Input and Processing

 Processing sequence for each log



Logstash and Elasticsearch

 Logstash

 Managing events and logs

 Parse and process with plugins

 Elasticsearch

 Java based searchable Database

 Schema-free, reads JSON (JavaScript Object Notation)

 Conflict Management



Kibana

 Platform to visualize/query the database

 Web Interface

 Real-time capability



Server Management 
Will de Grasse



SCP, RSYNC, and SSH

 SCP (secure copy) is a straight copy procedure

 -Based on the SSH protocol

 RSYNC is more complex, using a delta-transfer algorithm

 Can be configured to run through SSH protocol

 SSH (Secure Shell)

 Used to initiate remote, secure terminal connections



RSA keys (Cryptographic Key Pairs)

 Cryptographic key pairs form the basis of almost all modern web security

 This 2 part encryption/decryption only works when using a key pair



VSFTPD

 Stands for Very Secure File Transfer Protocol Daemon

 File Transfer Protocol is a robust and easy to use protocol which is used to 
upload or download files

 VSFTPD chosen for configurability, performance and security

 OpenSSL encryption ready



Conclusion

 The server is currently at the ready to deliver traffic

 A library and Wiki page prepared 

 Not necessarily final design choices



References

 [1] 

 J. Rasmusson, "Agile Nut Shell," 2014. [Online]. Available: 
http://www.agilenutshell.com/agile_vs_waterfall.

 [2] 

 Python Library, "Python Libs," 2015. [Online]. Available: python.org.

 [3] 

 CentOS, "Chapter 34, Automated Tasks," 2013. [Online]. Available: 
https://www.centos.org/docs/5/html/Deployment_Guide-en-US/ch-autotasks.html.

 [4] 

 W. Davison, "rsync," February 2014. [Online]. Available: 
https://download.samba.org/pub/rsync/rsync.html.

 [5] 

 NGINX, 2015. [Online]. Available: http://wiki.nginx.org/Configuration.




References

 [6] 

 UE Forum Community, "Ultimate Edition Forum," [Online]. Available: 
forumubuntusoftware.info.

 [7] 

 Elastic, "https://www.elastic.co/products," 2015. [Online]. 

 [8] 

 Logstash, "http://logstash.net/docs/1.4.2/," 2014. [Online]. 

 [9] 

 A. Cholakian, "http://exploringelasticsearch.com/overview.html," 2013. 
[Online]. 




