
 1

Abstract— this report summarizes the various design choices

and implementations used to produce a dual-standby safety
critical system. Features and test results of the system will be
examined in detail. Ways in which the system meets the
requirements will heavily reference the Appendices containing
various figures and tables located at the end of this report.

Index Terms— Arduino, cooling system, dual-standby, nuclear
plant cooling tower prototype design, Peltier Cube, Safety
Critical Analysis and Design.

I. DELIVERABLE ONE

 Introduction

 This prototype is a scaled model of a Nuclear Cooling
tower accomplished by powering a coil wounded heat
generating resistive block. The main objective of the safety
system is to achieve a high level of availability by utilizing fail
operate procedures that react to mishaps. This is achieved by
including two Arduino Due Microcontrollers acting as safety
mechanisms. The safety system is programmed with the C
based Arduino language which contains range thresholds that
flag spurious readings. Communication over serial is used to
exchange statuses with the secondary system that is inactive
until conditions are met in the primary system. These
conditions range from output errors that alert the
microcontroller that the effector output is not meeting the
required output. This is indicative of an internal issue, or the
primary system failing to communicate with the secondary
system. If that occurs the lack of communication signals the
secondary system to become the active microcontroller.

From the initial design provided in Part 1, the main
operation of the whole system did not change. After additional
research on the initial choices, key components were replaced
with alternatives and additional safety features were added.
These changes include; replacing Squareware and mbed with
two Arduino Dues, one Peltier cube instead of two, the
addition of three relays, 10k pull-up resistors and an
emergency switch. These changes are discussed in detail in
Section II, Part C.

II. DELIVERABLE TWO

A. System Description

The normal operations are defined by powering a
heat block while aggressively cooling it with fans and the
cooling effect generated by the Peltier cube. Table 1 contains
the general components of the prototype with their failure rate

per hour and description. The heat sync is the metal
dissipating the high temperatures generated by the heat block.
To ensure high surface contact between the Peltier cube and
the heat block, Arctic Silver 5 thermal paste was applied. Two
heat sensors are used at separate locations on the cooling unit.
One is dedicated to measuring the heat block, while the other
is attached directly to the Peltier cube. To achieve a stronger
combined force, two fans are also used. If one fan
malfunctions, the system is aware and directs the functioning
fan to a higher PWM level. A metal tube surrounds the
prototype to guide air upwards. Appendix I contains an image
of the prototype.

 The hardware diagram and software architecture
diagrams that were made to design the system are located in
appendices II-IV. Microcontroller A is the primary system
communicating serially with Microcontroller B, the standby
system. Ways in which the software and hardware mitigate
risk is further elaborated upon in subsection B.

 Table 1

Cooling System
ECE 4433: Safety Critical Design Project Report II (Group 2, 2015)

Alexander Ross, Fuad Hussein, Jeffrey Wo

Part Name and
model

λ (Hour) Function and Description

Peltier Cube
 TEC1 12709

 1E-6 Cooling the heat block via
thermoelectric effect with n-type and
p-type semi conductive pellets.

Heat block 1w
(Standard)

 1E-6 Resistor with internal winding used
to generate heat.

Fan
 AFB0712SHX02

1.65E-6 Motor with blades from a consumer
grade heat sync with PWM and
RPM signal outputs. Cools metals by
directing airflow.

Temperature Sensors
 TMC50- 25

1E-6 N-type thermoresistor used to
measure the temperature of the
system.

Relays
 JQX-15F (787),
DC60S5

0.5E-6 Electromagnetic switches that direct
power to ground or external PSU.
Controlled voltage output to the
effectors.

Microcontrollers
 Freaduino Due
MB_DUE_r3

18.9E-6 Controller with CPU and memory.
Communicating to detect error and
controlling the system.

Terminal boards
(Standard)

1E-7 Act as wires to organize and
simplify connections.

Wires
(Standard)

3E-6 Connect devices and pins.

10k resistors
(Standard)

3E-8 Act as pull up resistors for PWM.

Voltage Sensors
10589a

1E-6 Read the voltage passing to the
Peltier cube from the power supply

Power Supply
(Standard)

1E-6 Supply power to the Fans/Peltier
Cube/Heat block

 2

B. Mishap Mitigation Measurements

Following the analysis in the diagram, there are three
main sections that have safety implementations to prevent
mishaps which are illustrated in appendix XII. The following
three methods to mitigate risk are applied in a basic system to
minimize probability of a mishap occurring:

1. An external safety measure that is
incorporated as a layer of safety between the
mishap and hazardous event from the
application.

2. An internal safety measure between the
hazardous event from the application and
individual system failures.

3. The reliability and quality improvement
before any system failures.

The internal layer of safety for the cooling system
design is a software based detection approach utilizing sensors
measured by the microcontrollers to trigger various mitigating
techniques which divert the potential hazard [1]. The software
functions with the microcontrollers to detect any abnormalities
concerning the temperature, tachometer or voltage sensors.
When it does it reassigns the associated flag variable and
opens the connection to disengage the effectors to prevent the
potential mishap. To keep the system fail-operational,
different states are defined to take into account individual
effector signals and to detach if they cease to operate
unexpectedly. An RGB LED is used to reflect the system
state. This allows an operator to see when the system is in a
critical, normal or standby state. In addition, there is a serial
output that can be monitored via a COM port on a computer
terminal which updates the operator every second while in the
operating state.

The external layer of safety for the system are the
relays acting safety interlock. They do this by passing the
voltage from the power supply into a common ground when
no microcontroller signal is present. This allows the external
power to disconnect, minimizing the risk of damaging system
components.

Improvement of component reliability and quality
was considered. When possible, standard devices were used
with a low level of failures per hour. The microcontrollers
have a resettable fuse that protects the supplying USB port.
This inhibits the board from shorts and overcurrent if the USB
power supply was to surge. This also regulates the output for
the microcontroller pins to ensuring the components of the
microcontroller will not deteriorate or become overloaded.
The power supply also has a built in overload protection
system and a fixed output to prevent any over powering that
would result in component failure.

 The mishap mitigation procedures adhere to a list of
commands based on five different states identified by the fail
detection mechanism. The safety system determines the state
(Section II, Part C), by discretely reading values from the
temperature sensors, the RPM of the individual fans, the PWM
output to the fans (End around), and the voltage passing

through the Peltier cube positive terminals (Wrap around). If
a component reading exceeds its threshold the system detects
the error and flags the variable. Based on the criticality of the
component the system will either enter the fail-operate mode
or the fail-safe mode. The failure detection mechanism
dynamically adjusts the state it is in. If, for example, the
conditions to enter fail-operate mode are detected, the safety
system continues to perform measurements and adjust the
variable flags accordingly. If the flags that were set high are
set low, indicating normal operation, the system re-enters the
normal state.

C. Safety Feature Design Modifications

The Arduino Squarewear 2 and the mbed were
previously specified to be the primary and secondary standby
system respectively. Due to pin limitations and different
voltage levels having two Arduino Dues in their place was a
necessary change. The Arduino Dues have more pins and
communicate over Serial without the need of pull resistors,
which would have been required with the Squarewear and
mbed. This adjustment still maintains the expected fail-
operational features of the system with the advantage of a
more supple system.

Arduino Due microcontroller were the selected
boards built with the AT91SAM3X8E processor [2]. The
board has 54 digital I/O pins in which 12 can be used as a
PWM output. This is a highly preferred feature of the board
since the cooling system needs many I/O pins to control
LEDs, fans and relays. It also has 12 analog input pins capable
of reading any sensor data to be converted digitally for
analysis and serial monitoring. The board is also capable of
outputting up to 5 V DC and up to 800 mA. This used for the
components in the system that have low power draws. The
Arduino Due has powerful interrupt capabilities allowing any
pin on the board to operate with the interrupt service routine.
See appendix VI and V for pins used and a detailed pin
description.

The flexibility available with the Arduino Due is
favorable for this cooling design as there are plenty of pins
available and each with the capability of becoming an
interrupt. This gives the formation of the system wiring for
sensors or switches to be easily placed on convenient pins.
Both boards also have compatible serial communication links
to verify the presence of the other. This makes it possible for
the backup system to be notified of a missing link to the
primary system when a failure arises.

Due to the limited space on the heat sync, and the
Peltier heat dissipation requirements which were previously
unknown, only one Peltier cube was incorporated into this
system. With no radiator on the Peltier cube, the heat
generated outweighs the cooling effect approximately ten
seconds after being powered on.

The addition of three relays were introduced into the
system. The two fans are similar in voltage and current
requirements so they paired to the same relay. The heat block
is contained on the same model relay as the fans. The Peltier
cube is employed with a solid-state relay rated for higher

 3

current values. The safety system controls whether the signal
sends the relays to ground or to the external power supply.
This is to ensure minimal component damage and it is an
effective way to turn off the power to the heat block in the
event of a critical fail. It also allows the system to prep the
cooling system prior to the main operations. With this
alteration implemented, the system can now continue to
operate even when a component connected to one of the relays
has failed by simply sending a signal to the components relay
from the microcontroller. This feature is necessary and
effective for a fail-operational system since failing effectors
can be cut off from the main system and also be detected.

Pull-up resistors were required to cleanly read the
RPM of the fans. Both of these 10k resistors are being
powered by the 5V rail generated from the Arduinos. Because
the Arduinos pin capabilities are limited in how much voltage
they can sense and the PWM provides a small signal, the pull-
up resistors are necessary. A more effective means of
achieving this is with a logic level shifter, which was realized
too late in the project timeline to be implemented.

From the software scope the system has the ability to
detect and flag system failures for effectors to be properly
compensated for. The fan speeds can be adjusted via the PWM
input signals to a max speed in the case that the Peltier cube
has failed and the system must continue to operate. Should all
the effectors fail, the system safety features can detect this
situation and enter a critical fail-safe state that stops the
current flowing to the heat block, ceasing further heat
generation. A manual override switch connected to both
microcontrollers is programmed to be an external emergency
breaker shut down for both systems in the case an unexpected
failure or event is occurring. This allows an operator to
manually shut down the system if the alarms are issuing
warnings, but is unable to repair itself and enter a fail-operate
or fail-safe mode.

Dual redundancy was the initial plan within the
prototype. Due to the high reliability of sensors, a dual-
standby model was adapted instead. This safety feature has
been designed to allow the system to keep running in normal
conditions if the primary microcontroller has been completely
removed or destroyed. This is accomplished by programming
a serial link between the two microcontrollers. Signal statuses
are constantly sent to the secondary microcontroller from the
primary. If there is an absent signal the secondary system
assumes the primary system has experienced a failure and
begins to operate.

The system architecture flow chart in Appendix II
details the various commands that are run based on the system
state. The function “Identify State” is implemented by first
reading the various sensors and feeding the readings into the
range check function that compares the values to a predefined
mean value. Included in the range check function is the option
to set tolerance. Some components have individual tolerances,
or similar components have the same upper and lower limits.
Based on the flags, the “Implement State” function sets a flow
of different functions, which define five states as detailed
below.

1. Startup: The microcontroller signals the fan and
Peltier relays. The system waits for the Peltier

cube/Heat Sync to reach a pre-determined
temperature monitored by a sensor mounted on the
radiator. Once achieved the state is re-identified.

2. Normal: A signal is sent to the heat block relay such

that heat is now being generated. The fans and the
Peltier cube are both actively cooling in this state.
Readings are validated and flagged if an error is
detected.

3. Fail Operate: This state is entered for a variety of

potential mishaps. Where the main task of the system
is to cool, more power is delivered to the Peltier cube
and the PWM signal to the fans are maxed. For the
system to enter this state a fan or the Peltier cube may
be flagged, provided the other two fan flags are low.

4. Fail Safe: This state is outside of the scope of the
main operation. It is the state the system is in while
shutting down to mitigate a potential hazard. This is
triggered if both fans and the Peltier cube are flagged.
Once entered the system must be reset.

5. Standby: The system enters a standby state where

nothing should be executed and all effectors should
be disconnected allowing the system to be in a fail-
safe non-operable state. 1

III. DELIVERABLE THREE

A. F.M.E.A.

 Failure mode and effect analysis (FMEA) was
performed on the system to identify the various
components in the prototype and the effect of each failure
within the system. It is effective for identifying hazards in
order to implement fail operate techniques. See Appendix
XI for the full page report.

B. F.T.A.

For the full system analysis Failure Tree Analysis

(FTA) can be found in appendix VIII-XI. The system has
one critical error, this being that the heat block reaches high
temperatures without sufficient cooling to dissipate the
heat. The FTA shows how the prototype employs the relays
as a safety interlock mechanism. As discussed in previous
sections, with the relays controlling the route the power
supply travels, a critical failure could only occur by
switching mechanisms in the relays. The probability of that
happening is 0.5E-06, which is within reasonable standards.

1 Note: Microcontroller B is defaulted to this state. Once left, A does not

assume standby roll. Microcontroller failure post state change results in a fail
safe state.

 4

C. R.A.

To verify that the risk mitigation techniques that were
used lead to an acceptable level of mishap risk, Risk
Analysis (RA) was used. The various values that define the
probability values were extracted from [3] and shown in
tables 1 and 2. Equation 1 is a high level branch. Appendix
X contains the full calculations used to derive the
probability of failures per hour. Table 2 contains the actual
uncertainty values and failure rates per hour in more detail,
excluding the values provided in Table 1 located in the
Section II.

 Table 2

											 ைܲு ൌ ௌܲி ൅ ஻ܲி ൅ ௉ܲி ൅ ோܲி (1)
 =1.02 ∗ 10ିହ/ݎݑ݋ܪ

D. FMET

 Table 3

 Failure Mode and Effect Testing (FMET) was limited
given the nature of the failsafe mechanism. Event tree
analysis was used to understand the failures, located in
appendix VII. The safety system mechanisms covered a
variety of possible failures to the extent that injecting the
failures was limited. Table 2 Operational Hazard Analysis
methods was used to prevent the system from failing. By
detecting the path that leads to a hazard which causes the
mishap the full effect of the hazard can be better
understood. For an example; the temperature sensor can
either read higher or lower than the actual temperature. This
will cause the microcontroller to not trigger or disconnect
the effectors correctly which can cause the cooling system
to overheat or issue faulty commands. The fan will fail to
operate at correct speeds if the PWM readings are
corrupted, while the Peltier cube will fail if the temperature
sensor is outside of temperature range. Providing too much
power to the system could result in burning out or
damaging any of the effectors or the micro-controller. In
any of these cases the system will go into fail-operate mode
before safely shutting down or continue to operate until the
main system fails. The environment can also cause the
system to fail during a natural disaster or strong weather
conditions.

 Another source of failure for the safety system can be
induced by the mechanical failure in the relays. If the relays
fails to disconnect there will be over-cooling or overheating
in the system resulting in system failures. The power supply
for the units could also fail unexpectedly by electrical
failure internally within the supply or improper
maintenance in the unit. This failure could cause a ripple
effect by causing pin breakout in the microcontroller or in a
worst case scenario if the resettable polyfuse within the
microcontroller is burnt out it is very likely the board can
breakout from overcurrent.

IV. DELIVERABLE FOUR

A. System Critical Failure Rate Calculations

These equations are used to identify the probability of the
software failing. Equation 1 will be substituted to calculate the
software critical failure rate further on in calculations. The
completed code can be found at appendix XV.

ைܰ௉ ൌ 	 ܮ ∗ ை௉ (2)ܭ

ைܰ௉: Number of faults in the operational system.
 .ை௉: Software Density. Ranges from 1.1E-2 to 4.4E-4ܭ
Nominal = 2.2E-3.
L: Line of codes. 597 lines.

ைܰ௉ yields to be 2.2E-03 * 597 = 1.31 fault.

Module λ (Hour) Uncertainty
Factor

Processor 18.9E-06 10

Memory 13.0E-06 10

Relay output 9.2E-06 10

A/D converter 10.4E-06 10

Analog input 15.5E-06 10

Communication
(Bus controller)

19.8E-06 10

Electric power
supply

33.0E-06 10

Discrete output 1.65 E-06 10

Failure Type Effect Pass/Fail (Safety system
response)

1. Heat generated
exceeds 70 degrees
Celsius

Heat sensors
flagged, fail safe
entered

Pass.
The system successfully
detected the high readings.
After fail safe the system
must be rebooted.

2. Peltier Cube
loses power or
experiences power
surge.

System enters fail-
operate mode,
PWM to fan
increases. System
remains stable.

Pass
With both fans being wrote
a higher PWM value the
hot air quickly becomes
dissipated.

3. Power to
Microcontroller
A/B is removed

A/B reacts and
continues previous
state operations.

Pass
Serial listening in Standby
is triggered to exit and
enter the Normal mode to
re-identify the state. If B
goes down (Secondary)
signal to relays is lost and
heat dissipates

4. Full power loss
to relays

No power to heat
relay, heat
dissipates with
time.

Pass
The voltage being passed
from the power supply
goes to ground due to the
electromagnetic switching
mechanism inside the
relay.

 5

After calculating ைܰ௉. It is possible now to find the software
critical failure rate by using equation 2.

஼௥௜௧ߣ																																					 ൌ
ே಴ೝ೔೟
்
																							ሺ3ሻ

 .Average software critical failure rate	஼௥௜௧:ߣ
஼ܰ௥௜௧: Number of fault that can cause critical fail.

T: Total time software is operating.

஼ܰ௥௜௧ must be calculated first in order to find . This can
be achieved by using equation 3.
														 ஼ܰ௥௜௧ ൌ ைܰ௣ ∗ (4)																															஼௥௜௧ܨ

 .஼௥௜௧: Number of critical faults occurring from total faultsܨ
This was obtained by testing how many times a fault occurs
that makes the system fail. This value is assumed to be 1.42E-
1 as it is more applicable.
ைܰ௉ can be calculated by using equation 2.

஼ܰ௥௜௧ ൌ 1.13	 ∗ 	1.42 ∗ 10ିଵ 	ൌ 	16 ∗ 10^ െ 2 (5)

The average software critical failure rate can be obtained now
by substituting the obtained the value into equation 2.
Furthermore assuming the software is operating for an entire
year, which is equivalent to 8766 hours.

஼௥௜௧ߣ																 ൌ 16 ∗
ଵ଴షమ

଼଻଺଺
ൌ 1.83 ∗ 10ିହ (6)

The average software critical failure rate is in safe range. This
is comparative of the failure rate of a nuclear power (1e-5).

B. Conclusion

 The safety system has met expectations. The normal

operation of the system prevents the heat block from ever
reaching the predefined threshold. As previously mentioned
the maximum observed temperature of the heat block
surpassed the operating range of the temperature sensors. With
the maximum output possible with the power supplies the
system never surpasses the pre-defined thresholds. With the
dual standby measurements being employed one of the
microcontrollers can completely fail and the prototype will
still have a fully functional cooling system. Due to the external
power disconnect provided by the relays, complete power loss
to the rest of the system could occur and power being drawn
from the high voltage components is diverted to ground. A
high level of reliability and availability was achieved with this
design.

V. REFERENCES

[1] Dr. E. C. Guerra, " ECE 4433," UNB, Fredericton, 2015.

[2] Elecfreaks, 2015. [Online]. Available:
http://www.elecfreaks.com/store/freaduino-due-mbdue-p-
520.html.

[3] A. R. H. P. E. F. Riccardo Manzini, "Maintenance for
Industrial Systems," in 2011.

VI. ACKNOWLEDGEMENTS

 Gratitude is given to Dr. Eduardo Castillo Guerra for his

guidance in part selection and design techniques.

 6

VII. APPENDIX

Figure 1: Actual prototype .. i
Figure 2: System Architecture (AR) .. ii
Figure 3: System architecture functions (AR) iii
Figure 4: Block Diagram (AR) ... iv
Figure 5: Hardware implementation .. v
Figure 6: Arduino Due pinout ... vi
Figure 7: ETA (FH) ... vii
Figure 8: FTA part1 (FH) ... viii
Figure 9: FTA part2 (FH) ... ix
Figure 10: Full Risk Analysis Calculations (FH) x
Figure 11:FMEA (FH) .. xi
Figure 12: Mishap mitigation risk techniques xii

Appendix i

Figure 1: Actual prototype

Appendix ii

Figure 2: System Architecture (AR)

Appendix iii

Figure 3: System architecture functions (AR)

Appendix iv

Figure 4: Block Diagram (AR)

Appendix v

Figure 5: Hardware implementation

Appendix vi

Figure 6: Arduino Due pinout

Appendix vii

Figure 7: ETA (FH)

Appendix viii

Figure 8: FTA part1 (FH)

Appendix ix

Figure 9: FTA part2 (FH)

Appendix x

ைܲு ൌ ௌܲி ൅ ஼ܲி ൅ ௌܲி ൅ ிܲଵଶ

௙ܲଵଶ ൌ ிܲௌ் ∗ ௉ܲ௙ ∗ ௉ܲௐெ

௣ܲ௪௠ ൌ ௣ܲ௪௠௙ ൅ ோܲி

௣ܲ௙ ൌ ௣ܲ௙௔௨௟௧ ∗ ௏ܲ௦ ൌ ܧ2 െ 06

ௌܲி ൌ ஺ܲ஻ଵ ∗ ஺ܲ஻ଶ	

஺ܲ஻ଵ ൌ ோܲி ൅ ஼ܲி௉ ൅ ௉ܲி	

஼ܲி௉ ൌ ௌܲு ൅ ௌܲாேௌைோ ൅ ஽ܲை ൅ ெܲி	
ெܲி ൌ ௉ܲௐெ ൅ ௐܲ஽்	
	:݈ܿܽܥ	݈ܽ݊݅ܨ
ெܲி ൌ 1 ∗ 10ିଶ ∗ 13 ∗ 10ି଺ ൌ 1.3 ∗ 10ି଻	
Pେ୊୔ ൌ 1.83 ∗ 10ିହ ൅ 1 ∗ 10ି଺ ൅ 1.15 ∗ 10ିହ ൅ 1.3 ∗ 10ି଻ ൌ 3.6 ∗ 10ିହ	
P୅୆ଵ ൌ 9.2 ∗ 10ି଺ ൅ 3.6 ∗ 10ିହ ൅ 1 ∗ 10ି଺ ൌ 4.62 ∗ 10ିହ	
P୅୆ଵ ൌ P୅୆ଶ → Pୗ୊ ൌ ሺ4.62 ∗ 10ିହሻሺ4.62 ∗ 10ିହሻ ൌ 2.13 ∗ 10ିଽ

௣ܲ௙ ൌ ሺ1 ∗ 10ି଺ሻଶ ൌ 1 ∗ 10ିଵଶ

௣ܲ௪௠ ൌ 	1 ∗ 10ି଺ ൅ 1 ∗ 10ି଺ ൌ 2 ∗ 10ି଺	

௙ܲଵଶ ൌ 1 ∗ 10ି଺ ∗ 2 ∗ 10ି଺ ∗ 2 ∗ 10ିଶସ ൌ 2 ∗ 10ିଶସ
	

ைܲு ൌ 2.13 ∗ 10ିଽ ൅ 1.83*10^-5 + 19.8*10^-6 + 2*10^-24 		

ைܲு ൌ 	3.8 ∗ 10ିହ	/ݎݑ݋ܪ
Figure 10: Full Risk Analysis Calculations (FH)

Appendix xi

 Fail Mode and Effect Analysis (FMEA)

System : Cooling fan system page : 1 of 1

Subsystem: All Date : Nov25 / 2015

Operation mode: Operating
Fuad Hussein

 Component Failure Mode Failure Effect

-Temperature
sensor

-Reads high

-Reads low

-Fan does not operate

according to sensor reading, fan speed will be higher or lower
than what is required.

-Speed sensor -Saturation

-Burn out (resistor &
Amp)

-The feedback read will disconnect once it detects inaccurate
PWM signal.

-Fan -Not Operating

-Wrong speed for
temperature

-The cooling will not be new the required temperature
(PWM error)

-Power -Transient

-Off

-Wrong power

-A turn off or burn for the fan and micro-controller

-ADC -Error in sampling

-Burn out

-An error in micro-controller decisions due to wrong readings.

-PWM -Stuck (on/off) -Signal controller

-Power to the fan will assume full output.

-Peltier Cube -Unresponsive

-Burn out

-Error in voltage
driving value

-Other Peltier cube will compensate and enter safe shut down

-Fan will compensate

-Relay -Fails to control

voltage.
-The fan will burn once the relay fail to limit the voltage sent to
it.
-The Peltier cubes will also fail due to voltage overload.

-Arduino board -Fail to communicate
and detect error.

-The system will fail since the backup did not detect the fail.

-wire connections - Open or shorted. -The circuit will not connect the system as required.
-LEDS -Stuck on or off -Error in mode display
-10k resistor - Not working as a pull

up resistor.
-Cannot read the value of the RPM.

-Voltage sensor -Error in reading
voltage value

-Error in reading the voltage value of the Peltier cube

-Switch -Stuck on and off -Error on standby mode display.
Figure 11:FMEA (FH)

Appendix xii

Figure 12: Mishap mitigation risk techniques (JW)

Appendix xiii

Code

#include<math.h>

//To do: Setup, output readings, identify state

/*pin quick look up

*Temp
*A1 is sensor A
*A2 is sensor B

*Fan RPM
*A26 is top fan RPM reading
*A27 is bottom fan ROM reading

Peltier voltage sensor on A5
*Relays
* fan d22
* heatblock d24
* peltier A8

Bottom PWM on PWM 3
Top PWM on PWM 4

-Serial: 0 (RX) and 1 (TX)
-Serial1: 19 (RX) and 18 (TX)
-Serial2: 17 (RX) and 16 (TX)
-Serial3: 15 (RX) and 14 (TX)

*/

//Switch
int switchpin = A8;

int peltier_pin=A3;

//Sensor 1 Values
int tempPinC = A1;
int vdrduinoC= 5;
int tempflagC = 0;

double conv_Cold;
double conv_Hot;
double conv_Pelt;

//Sensor 2 Values
int tempPinH = A2;
int vdrduinoH = 5;
int tempflagH = 0;
float tempH=0.0;
float tempValueH=0.0;
int val2; //Create an integer variable

unsigned char c;

//RPM values
unsigned long lastmillis = 0;//Interrupt for Hall
Effector (RPM)

/*Top Fan */
volatile int rpmcount_t = 0;
int rpm_t =0;
int rpm_dpin_t=52;//Digital pin 26
int topFanPin= 7;//Analog output pwm

volatile int rpmcount_b = 0;
int rpm_b =0;
int rpm_dpin_b=50; //Digital pin 27
int bottomFanPin=6; //Analog output pwm

/*Relay pins*/

int relay_fans = 30;
int relay_heatblock = 26;
int relay_peltier = 36;

/* Overall State of System Identifiers*
 * 0 startup, 1 normal, 2 fail operate, 3 failsafe, 4
Standby*/
 int State=0;

Appendix xiv

 /* Neighbor State of System Identifiers*
 * 0 startup, 1 normal, 2 fail operate, 3 failsafe, 4
Standby*/
int neighbor_state=0;

//Flags
int TempSensorHotFlag=0;
int TempSensorColdFlag=0;
int PeltierCubeVoltageFlag=0;
int RPMFantopFlag=0;
int RPMFanBottomFlag=0;
int NeighborValuesFlag=0;
int PWMFanTopFlag=0;
int PWMFanbottomFlag=0;

//measurement readings
int raw_TempSensorHot=0;
int raw_TempSensorCold=0;
double raw_PeltierCubeVoltage=0;
int raw_RPMFantop=0;
int raw_RPMFanBottom=0;
int raw_NeighborValues=0;
int raw_PWMFanTop=0;
int raw_PWMFanbottom=0;

/*Predefined reading values for range check THIS IS
NEEDED!!!*/

int tolerance= 10000;
double pre_TempSensorHot=50;
double pre_TempSensorCold=0;
double pre_PeltierCubeVoltage=0;
int pre_RPMFantop=0;
int pre_RPMFanBottom=0;
int pre_NeighborValues=0;
int pre_PWMFanTop=0;
int pre_PWMFanbottom=0;

char reading_list_string;
char compared_string;
char neighborReadings;

// Internal connections LED:
// - red: D42
// - green: D44

// - blue: D46

#define red 42
#define green 44
#define blue 46

char str[4];

void setup() { //This needs work!

 pinMode(relay_fans, OUTPUT);
 digitalWrite(relay_fans, LOW); // Default top fan to
Off State

 pinMode(relay_heatblock, OUTPUT);
 digitalWrite(relay_heatblock, LOW); // Default block
fan to Off State

 pinMode(relay_peltier, OUTPUT);
 analogWrite(relay_peltier, 0); // Default Peltier to
Off state

 pinMode(tempPinC,INPUT); // sets the pin as input
 pinMode(tempPinH,INPUT); // sets the pin as input

 pinMode(peltier_pin, INPUT);

 Serial.begin(9600);
 Serial1.begin(9600);
 Serial2.begin(9600);

 pinMode(rpm_dpin_t,OUTPUT);
 pinMode(rpm_dpin_b,OUTPUT);

 pinMode(red, OUTPUT);
 pinMode(green, OUTPUT);
 pinMode(blue, OUTPUT);
 digitalWrite(red, HIGH);
 digitalWrite(green, HIGH);
 digitalWrite(blue, HIGH);
}

void FansOff(){
 digitalWrite(relay_fans, LOW);

Appendix xv

}

void FansOn(){
 digitalWrite(relay_fans, HIGH);
}

void HeatblockOff(){
 digitalWrite(relay_heatblock, LOW);
}

void HeatblockOn(){
 digitalWrite(relay_heatblock, HIGH);
}

void ActivatePeltier(int state, int additional){

 analogWrite(relay_peltier, state);
}

float readTempSensorsC(){
 // get values from the sensors
 raw_TempSensorCold = analogRead(tempPinC); //Reading
Through A0 Temperature from the Sensor
 return(raw_TempSensorCold);
}

float readTempSensorsH(){

 raw_TempSensorHot = analogRead(tempPinH);
//Reading Through A0 Temperature from the Sensor
 return(raw_TempSensorHot);
}

void debugDisplay(){
 String out;// = "arduino";
 if(State==3){
 out= "In fail safe mode";
 }
 if(State==2){
 out= "In fail operate mode";
 }
 if(State==1){
 out= "In normal mode";
 }
 if(State==0){

 out="Start up mode";
 }
 if(State==4){
 out="Standby mode";
}
 Serial.println(out);
 Serial.println("Local
Readings__
__
___________");
 Serial.println("| Temp Sensor Cold | Temp Sensor Hot |
Converted Peltier | RPM Fan Bottom | RPM Fan top | PWM
Fan Top | PWM Fan bottom | Neighbor Readings |");
 Serial.print("| ");
 Serial.print(conv_Cold);
 Serial.print(" | ");
 Serial.print(conv_Hot);
 Serial.print(" | ");
 Serial.print(conv_Pelt);
 Serial.print(" | ");
 Serial.print(raw_RPMFanBottom);
 Serial.print(" | ");
 Serial.print(raw_RPMFantop);
 Serial.print(" | ");
 Serial.print(raw_PWMFanTop);
 Serial.print(" | ");
 Serial.print(raw_PWMFanbottom);
 Serial.print(" | ");
 Serial.print(neighborReadings);
 Serial.print(" |");

}
void fanRPM_t(){
 attachInterrupt(digitalPinToInterrupt(rpm_dpin_t),
rpm_fan_t, FALLING);//interrupt zero (0) is on pin
two(2).
 if (millis() - lastmillis == 1000){ /*Uptade every one
second, this will be equal to reading frecuency (Hz).*/

 detachInterrupt(0); //Disable interrupt when
calculating

 rpmcount_t = 0; // Restart the RPM counter
 rpm_t=0;

Appendix xvi

 lastmillis = millis(); // Uptade lasmillis
 attachInterrupt(0, rpm_fan_t, FALLING); //enable
interrupt

 }
}

void rpm_fan_t(){ /* this code will be executed every
time the interrupt 0 (pin2) gets low.*/
 rpmcount_t++;
}

int fanRPM_b(){
 attachInterrupt(digitalPinToInterrupt(rpm_dpin_b),
rpm_fan_b, FALLING);//interrupt zero (0) is on pin
two(2).
 if (millis() - lastmillis == 1000){ /*Update every one
second, this will be equal to reading frecuency (Hz).*/

 detachInterrupt(0); //Disable interrupt when
calculating

 rpmcount_b = 0; // Restart the RPM counter
 rpm_b=0;
 lastmillis = millis(); // Uptade lasmillis
 attachInterrupt(0, rpm_fan_b, FALLING); //enable
interrupt
 return(0);
 }
}

void rpm_fan_b(){ /* this code will be executed every
time the interrupt 0 (pin2) gets low.*/
 rpmcount_b++;
 }

double tempConverter(int RawADC) { //Function to
perform the fancy math of the Steinhart-Hart equation
 double Temp;
 RawADC = map(RawADC,0,1023,1023,0);
 Temp = log(((10240000/RawADC) - 10000));
 Temp = 1 / (0.001129148 + (0.000234125 +
(0.0000000876741 * Temp * Temp))* Temp);
 Temp = Temp - 283.15; // Convert Kelvin
to Celsius

 return Temp;
}

void controlPWMFanTop(int pwmod){

 analogWrite(topFanPin, pwmod); // analogRead
values go from 0 to 1023, analogWrite values from 0 to
255

}

void controlPWMFanBottom(int pwmod){
 analogWrite(bottomFanPin, pwmod); // analogRead
values go from 0 to 1023, analogWrite values from 0 to
255
}

double peltierReading(){
 double volt;
 volt=analogRead(peltier_pin);
 (5/1023)*volt;
 return(volt);
}

void implementState(int State){
 if(State==0){
 Startup();
 }
 if(State==1){
 Normal();
 }
 if(State==2){
 FailOperate();
 }
 if(State==3){
 FailSafe();
 }
 if(State==4){
 Standby();
 }
 else{
 FailSafe();
 }
}

Appendix xvii

void neighborState(int i){

 if(i==5){
 FailSafe();
 }
 else{
 neighbor_state=i;
}

}

void coolingDelay(){
 while(raw_TempSensorCold>15){ //THIS WILL NEED TO
CHANGE!!!!!!! 100 is guessed raw temperature. Need ADC
value.
 raw_TempSensorHot=readTempSensorsH(); //Read
the analog port a2 and store the value in val
 }

}

void Startup(){
 HeatblockOff();
 FansOn();
 ActivatePeltier(255,0);
 controlPWMFanTop(100);
 controlPWMFanBottom(100);
 coolingDelay();
 readings();
 identifyState();

 digitalWrite(green, LOW);
 digitalWrite(red, HIGH);
 digitalWrite(blue, LOW);

}

void Normal(){
 HeatblockOn();
 FansOn();
 ActivatePeltier(255,0);
 controlPWMFanTop(100);
 controlPWMFanBottom(100);
 readings();

 digitalWrite(green, LOW);
 digitalWrite(red, HIGH);
 digitalWrite(blue, HIGH);
 identifyState();

}
void tempOverRange(){
 raw_TempSensorCold=readTempSensorsC();
 raw_TempSensorHot=readTempSensorsH();
 if(raw_TempSensorCold>80){
 State = 3; //Fail Safe, Bring system to safe (NON
operating) condition
 }
 if(raw_TempSensorHot>80){
 State = 3; //Fail Safe, Bring system to safe (NON
operating) condition
 }
}

void FailOperate(){
 HeatblockOn();
 FansOn();
 ActivatePeltier(255,255);
 controlPWMFanTop(255);
 controlPWMFanBottom(255);
 readings();
 tempOverRange();

 digitalWrite(green, HIGH);
 digitalWrite(red, HIGH);
 digitalWrite(blue, LOW);
 identifyState();

}

void FailSafe(){
 HeatblockOff();
 FansOn();
 ActivatePeltier(255,255);
 controlPWMFanTop(255);
 controlPWMFanBottom(255);

 digitalWrite(green, HIGH);

Appendix xviii

 digitalWrite(red, LOW);
 digitalWrite(blue, HIGH);
 DisableAll();

}

void DisableAll(){
 shutOffWait();
 ActivatePeltier(0,0);
 FansOff();
 readings();
}

void Standby(){//slaves starts here
 int i=0;
 do{
 if (Serial1.available()) {
 delay(500); //allows all serial sent to be received
together
 while(Serial1.available()) {
 str[i++] = Serial1.read();
 }
 a=str[i++];
 Serial.print(a);
 }

 if(i>0) {
 Serial.print(str);
 }
 } while(a==b);

 Serial.println("No signal");
 State=Normal;
}
void shutOffWait(){

 while(raw_TempSensorHot>30){ //THIS WILL NEED TO
CHANGE!!!!!!! 100 is guessed raw temperature. Need ADC
value.
 raw_TempSensorHot=readTempSensorsH(); //Read
the analog port a2 and store the value in val
 }
}

void watchDog(){

 const int RSTC_KEY = 0xA5;
 RSTC->RSTC_CR = RSTC_CR_KEY(RSTC_KEY) |
RSTC_CR_PROCRST | RSTC_CR_PERRST;
 while (true);

}
int readings(){

 int reading_list[100]={0, 0, 0, 0, 0, 0, 0};

 raw_TempSensorCold=readTempSensorsC(); //Read
the analog port a1 and store the value in val
 conv_Cold=tempConverter(raw_TempSensorCold);

TempSensorColdFlag=rangeCheck(conv_Cold,pre_TempSensorCo
ld,tolerance);

 raw_TempSensorHot=readTempSensorsH(); //Read the
analog port a2 and store the value in val
 conv_Hot=tempConverter(raw_TempSensorHot);

TempSensorHotFlag=rangeCheck(conv_Hot,pre_TempSensorHot,
tolerance);

 raw_RPMFantop= rpmcount_t; //top fan rpm
 RPMFantopFlag =rangeCheck(raw_RPMFantop,
pre_RPMFantop, tolerance);//flag

 raw_RPMFanBottom = rpmcount_b; //bottom fan rpm
 RPMFanBottomFlag=rangeCheck(raw_RPMFanBottom,
pre_RPMFanBottom, tolerance);//flag

 conv_Pelt=peltierReading(); //voltage through peltier
voltage sensor

PeltierCubeVoltageFlag=rangeCheck(conv_Pelt,pre_PeltierC
ubeVoltage,tolerance);//flag

 raw_PWMFanTop=0;//end around test for pwm on fan top
 PWMFanTopFlag=rangeCheck(raw_PWMFanTop,pre_PWMFanTop,
tolerance);//flag

Appendix xix

 raw_PWMFanbottom=0;//end around test for pwm on fan
top

PWMFanbottomFlag=rangeCheck(raw_PWMFanbottom,pre_PWMFanb
ottom, tolerance);//flag

 neighborReadings= receiveFromNeighbor();//receive
data from neighbor. this is already a string

 sendToNeighbor(reading_list_string);//send data to
neighbor

 // compareNeighbor(reading_list);

 return(0);
}

char receiveFromNeighbor(){ //REMEMBER!!!! MC A will use
Serial1 to send, MC B used Serial2 to send. MC A listens
on Serial 2, MC B listens on Serial1 UPDATE THIS TO
REFLECT
 int i;

 if (Serial1.available()) {
 delay(100); //allows all serial sent to be received
together
 while(Serial1.available() && i<1) {
 i = Serial1.read();
 }
 neighborState(i);
 return(i);

}
}

int rangeCheck(int measured, int predefined, int
tolerance){
 int variable_flag;

 int range_max= predefined+tolerance*predefined;

 int range_min= predefined-tolerance*predefined;

 if(measured>range_max){
 variable_flag=1;
 }
 if(measured<range_min){
 variable_flag=1;
 }

 else{
 variable_flag=0;
 }

 return(variable_flag);

}

void sendToNeighbor(char readings){
 Serial1.write(State);
}

int identifyState(){
 int FailLimit=0;

 if(TempSensorHotFlag==1)
 {State=2;
 FailLimit=FailLimit+1;
 }
 else{State=1;}

 if(TempSensorColdFlag==1)
 {State=2;
 FailLimit=FailLimit+1;
 }
 else{State=1;}

 if(PeltierCubeVoltageFlag==1)
 {State=2;
 FailLimit=FailLimit+1;}
 else{State=1;}

 if(RPMFantopFlag==1)
 {State=2;}
 else{State=1;}

Appendix xx

 if(RPMFanBottomFlag==1)
 {State=2;}
 else{State=1;}

 if(NeighborValuesFlag==1)
 {State=2;}
 else{State=1;}

 if(PWMFanTopFlag==1)
 {State=3;FailLimit=FailLimit+1;}
 else{State=1;}

 if(PWMFanbottomFlag==1)
 {State=3;FailLimit=FailLimit+1;}
 else{State=1;}

 if(FailLimit >= 3){
 State=3;
 return(0);
 }
}

int getSwitchState(){//0 is off, 1 is on
 int sw=analogRead(A8);

 return(sw);
}
void loop() { //This function loops while
the arduino is powered
 watchDog();//if after 16 seconds of downtime the
system will auto restart

 int switch_position=getSwitchState();
 if(switch_position==0){
 return;
 }
 else
 {

 implementState(State);
 fanRPM_b;
 fanRPM_t;

 Standby();

 debugDisplay();
 delay(5000);
// }

}

